
二苯乙烯苷通过激活Nrf2减轻MPP+诱导的PC12细胞凋亡
TSG Attenuats MPP+-induced Apoptosis in PC12 Cells by the Activation of Nrf2
目的 研究2,3,5,4′-四羟基二苯乙烯-2-O-β-D-葡萄糖苷( 2,3,5,4′-tetrahydroxystibene-2-O-β-D-glucoside,TSG)对1-甲基-4-苯基吡啶离子(1-methy-4-phenylpyridinium;MPP+)诱导PC12细胞凋亡的影响及其可能机制。方法 4-甲基偶氮唑蓝(MTT)检测PC12细胞活性; Hochest 33258染色观察细胞凋亡的变化; DCFH-DA/DAF-FM DA检测ROS/NO表达情况;Westernblotting检测Nrf2、Keap1、SOD1、SOD2、CAT蛋白的表达情况。结果 MPP+(500 μmol·L-1)作用于PC12细胞24 h后,与正常组比较,细胞存活率降低至(51.3±2.2)%(P<0.01);TSG(10,50 μmol·L-1)预处理24 h后,细胞存活率增加至(60.1±1.5)%,(74.2±2.1)%,(82.1±1.5)%(P<0.05);细胞核固缩明显减少,且具有剂量依赖性关系。此外,MPP+处理后使PC12细胞中ROS/NO升高,Nrf2、SOD1、SOD2、CAT蛋白表达减少,使keap1表达增多,而TSG预处理可以明显改善这些变化。结论 TSG对MPP+诱导的PC12细胞凋亡具有浓度依赖性的抑制作用,其作用机制可能通过激活Nrf2/Keap1通路减轻细胞内活性氧的聚集有关。
OBJECTIVE To explore the protective effect of 2,3,5,4′-tetrahydroxystibene-2-O-β-D-glucoside(TSG) on 1-methy-4-phenylpyridinium(MPP+) induced apoptosis in PC12 cells and its possible mechanism.METHODS The cell viability was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide(MTT).The morphological change of PC12 cells was observed by Hoechst 33258 staining.The intracellular ROS/NO level was examined by using DCFH-DA/DAF-FM DA. The expression level of Nrf2, Keap1, SOD1, SOD2, CAT protein was detected by Western blotting.RESULTS Compared with the control group,the ratio of cell survival decreased to (51.3±2.2)% (P<0.01) after MPP+ treatment with PC12 cells for 24 h.Cell viability was increased to(60.1±1.5)%,(74.2±2.1)%, (82.1±1.5)% (P<0.05) respectively after exposure with 10, 50 μmol·L-1 TSG.Cytochromatin concentration reduced and show the relation between quantity and result.Furthermore, TSG inhibited the MPP+-induced increase reactive oxygen species/nitric oxide (ROS/NO) in PC12 cell, and counteracted the over expression of Keap1 and low-expression of Nrf2, SOD1, SOD2, CAT.CONCLUSION TSG plays a possible neuroprotective role in MPP+ induced apoptosis of PC12 cells by a concentration-dependent manner, and the mechanism of the effects of TSG may be involved in facilitating Nrf2/keap1 activation.
二苯乙烯苷 / 凋亡 / Nrf2 / PC12细胞 {{custom_keyword}} /
TSG / apoptosis / Nrf2 / PC12 cell {{custom_keyword}} /
[1] DE L L, BRETELER M M. Epidemiology of Parkinson′s disease[J]. Lancet Neurol, 2006, 5(6):525-535.
[2] ZHANG W, HE H, SONG H, et al. Neuroprotective effects of salidroside in the MPTP mouse model of Parkinson′s disease: involvement of the PI3K/Akt/GSK3β pathway[J]. Parkinsons Dis, 2016,2016:9450137.
[3] PENG Y, ZENG Y, XU J, et al. PPAR-γ is involved in the protective effect of 2,3,4′,5-tetrahydroxystilbene-2-O-beta-D-glucosideagainst cardiac fibrosis in pressure-overloaded rats [J]. Eur J Pharmacol, 2016,791:105-114.
[4] LING S, XU J W. Biological activities of 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside in antiaging and antiaging-related disease treatments[J]. Oxid Med Cell Longev, 2016,2016:4973239. doi: 10. 1155/2016/4973239.
[5] HE H, WANG S H, LI X F, et al. TSG attenuated MPTP-induced neurotoxicology in Parkinson′ s disease mice by the inhibition of ROS [J]. Chin J Neurol(中华神经科杂志),2013,29(5): 531-536.
[6] NARASIMHAN M, RIAR A K, RATHINAM M L, et al. Hydrogen peroxide responsive miR153 targets Nrf2/ARE cytoprotection in paraquat induced dopaminergic neurotoxicity[J]. Toxicol Lett, 2014, 228(3):179-191.
[7] ZHANG N, SHU H Y, HUANG T, et al. Nrf2 signaling contributes to the neuroprotective effects of urate against 6-OHDA toxicity[J]. PLoS One, 2014,9(6):e100286. doi: 10. 1371/journal. pone. 0100286.
[8] YAMAZAKI H, TANJI K, WAKABAYASHI K, et al. Role of the Keap1/Nrf2 pathway in neurodegenerative diseases[J]. Pathol Int, 2015, 65(5):210-219.
[9] LEE A, GILBERT R M. Epidemiology of Parkinson disease[J]. Neurol Clin, 2016, 34(4):955-965.
[10] OUYANG L, ZHANG L, LIU B, et al. Autophagy pathways and key drug targets in Parkinson′s disease[J]. Acta Pharm Sin(药学学报), 2016, 51(1):9-17.
[11] LOTIA M, JANKOVIC J. New and emerging medical therapies in Parkinson′s disease[J]. Expert Opin Pharmacother, 2016, 17(7):895-909.
[12] KLINGELHOEFER L, REICHMANN H. Pathogenesis of Parkinson disease--the gut-brain axis and environmental factors[J]. Nat Rev Neurol, 2015,11(11):625-636.
[13] PAJARES M, JIM NEZ-MORENO N, DIAS I H, et al. Redox control of protein degradation[J]. Redox Biol, 2015,6:409-420.
[14] KEMAL U T, EZGI C B, SERMIN G, et al. The Nrf2/ARE pathway: a promising target to counteract mitochondrial dysfunction in Parkinson′s disease[J]. Parkinsons Dis, 2011: 314082. doi:10.4061/2011/314082.
[15] HU W, WANG G, LI P, et al. Neuroprotective effects of macranthoin G from Eucommia ulmoides against hydrogen peroxide-induced apoptosis in PC12 cells via inhibiting NF-κB activation[J]. Chem Biol Interact, 2014,224:108-116.
[16] JAVED H, AZIMULLAH S, ABULKHAIR S B, et al. Neuroprotective effect of nerolidol against neuroinflammation and oxidative stress induced by rotenone[J]. BMC Neurosci, 2016,17(1):58.
[17] HU W, WANG G, LI P, et al. Neuroprotective effects of macranthoin G from Eucommia ulmoides against hydrogen peroxide-induced apoptosis in PC12 cells via inhibiting NF-κB activation[J]. Chem Biol Interact, 2014,224:108-116.
[18] ZUO L, MOTHERWELL M S. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson′s disease[J]. Gene, 2013,532(1):18-23.
国家自然科学基金资助项目(30772743)
/
〈 |
|
〉 |